If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+5u-9=0
a = 4; b = 5; c = -9;
Δ = b2-4ac
Δ = 52-4·4·(-9)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-13}{2*4}=\frac{-18}{8} =-2+1/4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+13}{2*4}=\frac{8}{8} =1 $
| 4x-2(-3x-5)=130 | | 3(x-2)=3(5) | | 3*x+2(x+1)+7=5 | | 11/2x+4=-3/2 | | -100=-5(5+3a) | | -3v+v=-2 | | X^2-10k=20 | | 6y-1=2y-y | | 3(3u+4)=49 | | 10x+10=4(2x+4)+2x-6 | | 2(x-4)+6=3(x+1) | | 7=3a+5a-a=7 | | x/8/5=35/16 | | q+5—9=1 | | 375=-5x^2+200x-1500 | | -(r-2)=2r-7 | | 6z*z+23z=18 | | ½(8x-32)+16x=24 | | 500=-5x^2+200x-1500 | | 17,2x+5,8=19 | | X2-22x+121=13 | | 14(2x-6)=7x-6 | | -3x=44 | | 2-5x=6x+24 | | 3+4x=-6=x | | −2x−1+3x=7 | | 2,3x+3,4=6 | | (x^2-x)/(x^2-x+1)-(x^2-x+2)/(x^2-x-2)=1 | | 8x+38=-3+4x+5+10x | | (x^2-x)/(x^2-x+1)-(x^2-x+2)/(x^-x-2)=1 | | 4y-2/5-7y=-3/7 | | 4y-2/5-7y=-3/6 |